• Zum Hauptinhalt springen
  • Zum Footer springen
  • Deutsch - de
  • English - en

    Comprehensiv...

    • Clinical research
      • Interdisciplinary pediatric study center (Hauner iPSC)
      • Ped-COVID-19 Study
      • Michael Albert
      • Scivias Study
      • TRACE Study
      • ImmGenDC Study
      • Hematology/Oncology/Coagulation
    • Research Labs
      • Binder Lab
      • Bohlen Lab
      • Braun Lab
      • Gaertner Lab
      • Griese Lab
      • Hauck Lab
      • Hübner Lab
      • Jeremias lab
      • Kim-Hellmuth Lab
      • Klein Lab
      • Koletzko Lab
      • Kotlarz Lab
      • Lange-Sperandio Lab
      • von Mutius Lab
      • Nußbaum Lab
      • Rosenecker Lab
      • Schaub Lab
      • Schmid Lab
      • Schwerd Lab
    • PhD Program
    • Technology platforms
      • Bioinformatics
      • Flow Cytometry
      • High throughput sequencing
      • Microscopy
      • Pre-GMP Facility
      • Mass spectrometry
      • Hauner Biobank
      • Organoid Lab
      • Humangenetik am Hauner
    • News/Events
      • News
      • Rare Disease Day
      • ECHO-Meeting
      • Meinhard von Pfaundler-Lectures
      • Klaus Betke Symposium
    • Join us!
    1. CCRC-HaunerEN
    2. Clinical research
    3. Scivias Study

    Scivias Study

    • Aims of the Study:


      • Identification of new biomarkers for the overall assessment of the systemic health status of childrenDevelopment of a novel diagnostic tool in children 
      • Establishment of a normal range for fundus photography, OCT and OCT angiography with regard to retinal changes in various age groups

      • Evaluation of the value of optical fundus evaluation in (early) diagnosis of a rare disease
      • Establishing a reference range for changes in the transcriptome, metabolome and proteome in various age groups and in various acute and chronic diseases
      • Correlation of systems biology data with disease activities of rare diseases
      • Specification of phenotyping of patients within different disease groups

    • Scivias Study

      Project Summary

      Early detection of diseases is a central challenge for pediatric medicine. The earlier a disease is discovered, the easier it is to avoid complications and sequelae and to reduce long-term morbidity. This is particularly relevant for children with rare diseases in whom the diagnostic process is often delayed. Children with rare and chronic diseases are usually only diagnosed when their disease manifests or complications arise. Thus, there is an urgent need to develop and use new sensitive and specific diagnostic methods, preferably as non-invasive as possible.

      Next generation sequencing technologies have revolutionized human genetics. A growing number of hereditary monogenic rare diseases has been identified, leading to a better understanding of molecular processes even in multifactorial diseases. In addition to genomics, other omics-technologies (e.g. transcriptomics, metabolomics, proteomics, immunomics) complement our scientific armamentarium to comprehensively assess states of diseases. A challenge of these technologies is to integrate and interpret these large datasets. Emerging data suggest that combining multi-layer omics data with digital clinical data will allow us to improve diagnostics, to optimize prevention, and to design definitive cures. Advances in machine learning enabling pattern recognition and statistical associations, offer new perspectives for developing innovative and non-invasive diagnostic methods.

      In the context of this non-randomized, monocentric observation study, the benefit of using a combination of pattern recognition of image data of the retina by fundus photography and optical coherence tomography (OCT) in combination with the analysis of various OMICS data (genome, transcriptome, proteome and metabolome) will be explored in search of markers for rare and chronic childhood diseases. Retinal images and OMICS data are pseudonymized and subjected to machine learning algorithms. Starting from classical nosological entities, we will compare the data not only within defined groups but also across phenotypes, aiming to shed light on pleiotropic factors. Once associations between genomic and phenotypic data sets become apparent, new hypotheses will be developed and tested in suitable model systems. 

      Multi-OMICS methods

      Content will follow shortly.

      A.I. analysis

      Content will follow shortly.

    • Inquieries only via the official e-mail adress: Scivias.Hauner@med.uni-muenchen.de

      Prof. Dr. med. Dr. sci. nat.  Christoph Klein
      Studienleitung/Chefarzt
      more on the person
      Dr. med. Katharina Danhauser
      Stellvertretende Studienleitung
      Ügbzgplug Mguzgfcipavimeful,_vfiuyziu/dmi
      more on the person
      PD Dr. Claudia Priglinger 
      Stellvertretend Studienleitung Augenklinik
      HägfdmlgsPp:lxäluxipvim ful_vfiuyziu-mi
      Dr. med. Anna-Lisa Lanz
      OMICs-Labor, Laborleitung
      FuugVlcgeVWWgußvimefSul+vfiuyziusmi
      Larissa Mantoan
      Studienärztin
      VgplccgeOgubüguvimeful_vfiuydziuemi
      more on the person
      Dr. med. Rebekka Astudillo, DTMIH
      Studienärztin
      Bijioog,-FWcbfmnDlääüvim ful_vfiuyziu mi
      more on the person
      Dr. med. Selina Gläser
      Studienärztin
      Riäl:ugsXägicipvim-fJulGvfiuyziusmi
      more on the person
      Dominik Knebel
      Wissenschaftlicher Mitarbeiter Augenklinik
      MüvlunlosÜu,Y:ijiävimefulGvfiuyziusmi
      more on the person
      Dr. Benedikt Schworm 
      Wissenschaftlicher Mitarbeiter Augenklinik
      AiuimlobeRyzéüpvvim fulhvfiuyziu/mi
      Sachiko Kwaschnowitz; M.Sc.
      Study Nurse
      RgyzloütÜégcyzuüélbßvimtfulhvfiuyziu-mi
      Karla Strniscak
      Projektmitarbeiterin, MFA
      Ügpäg Rbpulcygovim-fulGvfiuyziusmi
      more on the person
      Monika Prothmann
      OMICs-Labor, leitende TA
      vüulog öpübzvguuvimtful_vfiuyziu mi
      Daniel Weiß
      Informatiker
      WMguliäsUilccvim ful_vfiuWyziu mi
      Dr. Susanne Pangratz-Fuehrer
      Wissenschaftliche Mitarbeiterin, Projekt Management
      Rfcguui-PguxpgbßÄfizpipvimStful#vfiuyziu mi
      Prof. Dr. med. Dr. sci. nat.  Christoph Klein
      Studienleitung/Chefarzt
      more on the person
      Dr. med. Katharina Danhauser
      Stellvertretende Studienleitung
      Ügbzgplug Mguzgfcipvimefulhvfiuyziu mi
      more on the person
      PD Dr. Claudia Priglinger 
      Stellvertretend Studienleitung Augenklinik
      HägfYmlg Pplxäluxipvim fula_vdfiuyziutWmi
      Dr. med. Anna-Lisa Lanz
      OMICs-Labor, Laborleitung
      FuugVlcg Vgußvim fulrvfiuyziu mi
      Larissa Mantoan
      Studienärztin
      VgplcYcgtOg,ub:üguvim-fulrvfiuyziuemi
      more on the person
      Dr. med. Rebekka Astudillo, DTMIH
      Studienärztin
      Bijioog-Fcbfm,lääüvimsfulhWv:faiuyziu-mi
      more on the person
      Dr. med. Selina Gläser
      Studienärztin
      RiälugeXägicipvimefunl_vfiuyziud-mi
      more on the person
      Dominik Knebel
      Wissenschaftlicher Mitarbeiter Augenklinik
      WMüvluldosÜuijiävim ful_vafiuyziu-mi
      more on the person
      Dr. Benedikt Schworm 
      Wissenschaftlicher Mitarbeiter Augenklinik
      Aiuimlob-RyzéüpYvvimd-ful_vfiuyziusami
      Sachiko Kwaschnowitz; M.Sc.
      Study Nurse
      WRgyzloü ÜégacyzuüélbJßvimtfulhvfiuyziu mi
      Karla Strniscak
      Projektmitarbeiterin, MFA
      ÜgpägsRbpulcygovim fulahvfiuyziuemi
      more on the person
      Monika Prothmann
      OMICs-Labor, leitende TA
      vüulogYsöpübzvgunuvimsful_vfi;uyziu-mi
      Daniel Weiß
      Informatiker
      MguliäsUilccvimeful_vfiuyziu mai
      Dr. Susanne Pangratz-Fuehrer
      Wissenschaftliche Mitarbeiterin, Projekt Management
      Rfcguui-PguxpgbßÄfizpiapvimsfulhvfiuyziuemi
    • Scivias Study

      Dr. von Hauner Children's Hospital, University Hospital LMU Munich

      Lindwurmstrasse 4
      80337 Munich
      Rylqlgc ZgDfui,pvJi;msful#vfiuyziusmi

    Thank you to all donors and supporters of the Scivias study

    The Scivias study is kindly supported by Eva Mayr-Stihl Stiftung, Carl Zeiss AG and Munich Re, among others.

    Research at CCRC Hauner

    Contact LMU Klinikum

    Contact CCRC Hauner

    Haunersches

    CCRC Hauner - Comprehensive Childhood Research Center

    Kinderklinik und Kinderpoliklinik

    im Dr. von Haunerschen Kinderspital

    Ludwig Maximilians Universität München

    Lindwurmstr. 4

    80337 Munich, Germany


    Editor login
    Imprint | Data-Safety